Figure 1 compares the average polarization curves measured for 5 MEAs employing the SSC ionomer in their cathode CLs (i.e. Aquivion® 830 EW) to 5 MEAs employing the LSC ionomer in their cathode CLs (i.e. Nafion® 1100EW) at 80°C fed with ambient pressure air humidified at 100 % and 50 % RH. In the kinetic region (i.e. E ≥ 0.80 V) of the polarization curves, the cell performance of both set of MEAs are identical at both 100 and 50% RH. In the mass transport region at high current densities, the MEAs containing the SSC ionomer in their cathode CLs perform better than those containing the LSC ionomer in their cathode CLs under both moderate (50%) and high (100%) relative humidity. Our results appear to be unique because others have only seen improvement in PEMFCs with SSC LEW ionomers under low RH conditions, while we see performance improvements from the LEW SSC ionomers across the full range of RH. (1, 2)
This presentation will discuss how the SSC ionomer affects the physical attributes of the MEA (porosity, impedance), resulting in higher performance at high current densities independent of the RH.
Figure 1. Comparison of the average polarization curves measured for 5 Pt/VC MEAs employing the SSC ionomer (Aquivion® 830EW) in their cathode CLs to 5 Pt/VC MEAs employing the LSC ionomer (Nafion® 1100EW) in their cathode CLs at 80°C fed with ambient pressure air humidified at 50% and 100% RH.
1. C. Lei, D. Bessarabov, S. Y. Ye, Z. Xie, S. Holdcroft and T. Navessin, J Power Sources, 196, 6168 (2011).
2. Y. C. Park, K. Kakinuma, H. Uchida, M. Watanabe and M. Uchida, J Power Sources, 275, 384 (2015).