PGM-free catalysts with high volumetric activity, four-electron selectivity (i.e., low hydrogen peroxide yield), and long-term stability in highly acidic and strongly oxidizing environment of the fuel cell cathode are desired as replacements for PGM-based ORR catalysts. For this presentation, state-of-the-art PGM-free ORR catalysts, developed by our group [1, 2], which are obtained via high-temperature treatment of dual nitrogen precursors, cyanamide (CM) and polyaniline (PANI), different transition metal precursors (Fe, Co, Mn), and with or without carbon support are used as model PGM-free catalyst systems. Depending on the transition metal used, catalysts with different physical and electrochemical characteristic properties are obtained. Specifically, Fe-based catalysts are generally known for their high activity and low peroxide yield generation. However, Co- and Mn-based catalysts generate highly graphitic structures which could improve catalyst long-term stability. In this work, structure-activity-durability relationships are developed based on comprehensive physical, chemical, and electrochemical characterization of highly active (CM+PANI)-Me-C catalysts (Me = Fe, Co, Mn), correlating properties such as carbon structure, elemental speciation, and CO2 generation.
Acknowledgement
Financial support for this research by DOE-EERE through Fuel Cell Technologies Office is gratefully acknowledged.
[1] Chung, H.T., Holby, E.F., Purdy, G.M., Babu, S.K., Litster, S., Cullen, D.A. More, K.L., Zelenay, P. (2015). “Combining Nitrogen Precursors in Synthesis of Non-Precious Metal ORR Catalysts with Improved Fuel Cell Performance.” ECS Meeting Abstracts, MA2015-02 (37), 1278.
[2] Martinez, U., Holby, E.F., Dumont, J.H., Chung, H.T., Zelenay, P. (2016) “Non-PGM ORR Catalysts Based on Transition Metals Alternative to Iron.” ECS Meeting Abstracts, MA2016-01, 1719.