Low Temperature Cyclic Deposition/Etch (CDE) of Tensile-Strained Si:P

Tuesday, 11 October 2022: 09:00
Room 212 (The Hilton Atlanta)
J. M. Hartmann, J. Kanyandekwe, and M. Veillerot (Université Grenoble Alpes, CEA, LETI)
Our aim was to assess the feasibility of the Low Temperature Selective Epitaxial Growth of tensile-Si:P (for Raised Sources and Drains in n-type FETs). Ideally, we would like to have high amounts of tensile strain and low resistivities in t-Si:P layers grown at 550°C, with (i) mainstream Si2H6 + PH3 gases for the non-selective deposition of t-Si:P and (ii) HCl + GeH4 for the selective etches of amorphous Si:P versus monocrystalline Si:P (to have selectivity on patterned wafers). In Ref (1), we focused on deposition in such cyclic processes. Thanks to (i) high F(PH3)/(2*F(Si2H6)) Mass-Flow Ratios (MFR), (ii) a reduction of the H2 carrier flow, from the reference value of a few tens of standard liters per minute down to 1/5th of it and (iii) a chamber pressure increase, from 20 Torr up to 90 Torr, we succeeded in dramatically increase [P]subst. and reach values as high as 7.9% in t-Si:P layers. 40 Torr was the best pressure in order to simultaneously have (i) a high substitutional P concentration (6.3%), (ii) a reasonable growth rate (5.5 nm min.-1) and (iii) a low electrical resistivity (0.41 mOhm. cm), without being hampered by a layer uniformity that would be too degraded to be of use in actual devices. Those t-Si:P layers, grown with a MFR of 0.46, were of superior crystalline quality and smooth. We have otherwise shown in Ref. (2) that it was possible, thanks to (i) a reduced H2 carrier flow, (ii) a low HCl mass-flow and (iii) a relatively high GeH4 mass-flow, to etch away mono-cristalline t-Si:P at temperatures close to 550°C

We have thus evaluated the Cyclic Deposition / Etch (CDE) of t-Si:P at 550°C. Deposition occurred at 40 Torr with Si2H6 + GeH4, while (selective) etching was conducted at 90 Torr with HCl + GeH4. Pressure was ramped up or down with a 5 Torr / s slope. 15s pure HCl etchings, also at 90 Torr, were sometimes used after HCl + GeH4 etchings to remove surface Ge atoms.

We first evaluated, for 10 cycles CDE processes, the impact of the HCl + GeH4 etch duration on the t-Si:P thickness and the substitutional P concentration. The deposition time / cycle was always 60s. As expected, the t-Si:P thickness decreased more or less linearly as the HCl + GeH4 etch duration / cycle increased, from ~ 50 nm for 0s down to 20-25 nm for 60s (Fig. a). Meanwhile, the “apparent” substitutional P concentration and thus the tensile strain decreased less and less, as the HCl + GeH4 etch duration/cycle increased, when using high flows of pure HCl at the end of each cycle to get rid of excess Ge atoms (from 6.2% for 0s down to 2.0% for 60s in the most favorable configuration; Fig. b). Such a tensile strain loss was shown by SIMS to be due to (i) less and less P atoms and (ii) more and more Ge atoms being present in the Si lattice as the HCl + GeH4 etch duration/cycle increased (from 6.2% and 0% for 0s down to/up to 4.4% and 5.5% for 60s; Fig. c). The surface haze of CDE-grown layers was otherwise ~ 2 times higher than that of layers grown without etchings and the electrical resistivity slightly increased with the HCl + GeH4 etch duration/cycle (from 0.38 mOhm.cm for 0s up to 0.42 mOhm.cm for 60s).

Thanks to the use of 10 cycles CDE processes with various HCl + GeH4 etch durations on bulk and SiN-covered Si substrates, we then showed that an etch selectivity of ~ 6 could be expected, for a-Si:P over t-Si:P, on patterned wafers (Fig. d). The presence of numerous nuclei on SiN-covered substrates nominally free of any bi-dimensional a-Si:P layers was evidenced by haze measurements, however, hinting at a lower effective selectivity.

We then switched over to patterned SOI wafers with gates. We succeeded, with 7 cycles CDE processes, in having almost full selectivity with 60s depositions and 40s etches / cycle, respectively (Fig. e). Maybe because there was a mix of a-Si:P and t-Si:P regions on such wafers, we had almost the same deposited t-Si:P thickness / CDE cycle (4.1 – 4.2 nm) whatever the HCl + GeH4 duration / cycle in the 15s – 40s range (Fig. f). Meanwhile, there was a gradual disappearance of a-Si:P on dielectrics as that etch duration increased.

[1] J.M. Hartmann and J. Kanyandekwe, J. Cryst. Growth 582, 126543 (2022).

[2] J.M. Hartmann and M. Veillerot, Semicond. Sci. Technol. 35, 015015 (2020).