(Invited) The ‘Almost Unreasonable’ Usefulness and Effectiveness of Pores

Tuesday, 11 October 2022: 16:20
Room 210 (The Hilton Atlanta)
C. O'Dwyer (University College Cork)
We really like pores in our research group. Big pores, small pores, ordered pores, random pores – they all have a function and as is often found, show behaviour that is not always predicted. I started my research journey trying to put extremely thin films onto near-perfect III-V crystals to control (opto)electronic properties and when the first TEM on our campus showed the image in Fig. 1 almost 21 years ago (1,2), the electrochemical modification of the InP made more sense. In this talk, I will summarise the journey from porous InP that led to studies of other porous semiconductors such as silicon (3-10) and GaN (11-15), periodically ordered photonic crystal porous structures (16-26) and some optical, thermal and electrochemical properties photocatalysis, batteries and related that were modified by the porous structure, leading up to the most recent porous materials (27).

References

  1. C. O’Dwyer, D. N. Buckley, D. Sutton, M. Serantoni and S. B. Newcomb, J. Electrochem. Soc., 154, H78 (2007).
  2. C. O’Dwyer, D. N. Buckley, D. Sutton and S. B. Newcomb, J. Electrochem. Soc., 153, G1039 (2006).
  3. C. O'Dwyer, W. McSweeney and G. Collins, ECS J. Solid State Sci. Technol., 5, R3059 (2016).
  4. W. McSweeney, C. Glynn, H. Geaney, G. Collins, J. D. Holmes and C. O'Dwyer, Semicond. Sci. Technol., 31, 014003 (2016).
  5. W. McSweeney, H. Geaney and C. O'Dwyer, Nano Res., 8, 1395 (2015).
  6. W. McSweeney, H. Geaney, C. Glynn, D. McNulty and C. O'Dwyer, ECS Trans., 66, 39 (2015).
  7. W. McSweeney, O. Lotty, C. Glynn, H. Geaney, J. D. Holmes and C. O'Dwyer, Electrochim. Acta, 135, 356 (2014).
  8. W. McSweeney, O. Lotty, N. V. V. Mogili, C. Glynn, H. Geaney, D. Tanner, J. D. Holmes and C. O'Dwyer, J. Appl. Phys., 114, 034309 (2013).
  9. E. Quiroga-González, J. Carstensen, C. Glynn, C. O’Dwyer and H. Föll, Phys. Chem. Chem. Phys., 16, 255 (2014).
  10. C. Glynn, K.-M. Jones, V. Mogili, W. McSweeney and C. O'Dwyer, ECS J. Solid State Sci. Technol., 6, N3029 (2017).
  11. O. V. Bilousov, J. J. Carvajal, A. Vilalta-Clemente, P. Ruterana, F. Díaz, M. Aguiló and C. O’Dwyer, Chem. Mater., 26, 1243−1249 (2014).
  12. O. V. Bilousov, J. J. Carvajal, H. Geaney, V. Z. Zubialevich, P. J. Parbrook, O. Martínez, J. Jiménez, F. Díaz, M. Aguiló and C. O’Dwyer, ACS Appl. Mater. Interface, 6, 17954 (2014).
  13. O. V. Bilousov, J. J. Carvajal, H. Geaney, F. Díaz, M. Aguiló and C. O’Dwyer, CrystEngComm, 16, 10255 (2014).
  14. O. V. Bilousov, H. Geaney, J. J. Carvajal, V. Z. Zubialevich, P. J. Parbrook, A. Giguère, D. Drouin, F. Díaz, M. Aguiló and C. O’Dwyer, Appl. Phys. Lett., 103, 112103 (2013).
  15. O. V. Bilousov, J. J. Carvajal, D. Drouin, X. Mateos, F. Díaz, M. Aguiló and C. O'Dwyer, ACS Appl. Mater. Interfaces, 4, 6927 (2012).
  16. S. O'Hanon, D. McNulty, R. Tian, J. Coleman and C. O'Dwyer, J. Electrochem. Soc., 167, 140532 (2020).
  17. D. McNulty, H. Geaney, Q. Ramasse and C. O'Dwyer, Adv. Funct. Mater., 30, 2005073 (2020).
  18. A. Lonergan, C. Hu and C. O'Dwyer, Phys. Rev. Materials, 4, 065201 (2020).
  19. G. Collins, A. Lonergan, D. McNulty, C. Glynn, D. Buckley, C. Hu and C. O’Dwyer, Adv. Mater. Interfaces, 7, 1901805 (2020).
  20. D. McNulty, A. Lonergan, S. O'Hanlon and C. O'Dwyer, Solid State Ionics, 314, 195 (2018).
  21. D. McNulty, H. Geaney, D. Buckley and C. O'Dwyer, Nano Energy, 43, 11 (2018).
  22. A. Lonergan, D. McNulty and C. O'Dwyer, J. Appl. Phys., 124, 095106 (2018).
  23. S. O'Hanlon, D. McNulty and C. O'Dwyer, J. Electrochem. Soc., 164, D111 (2017).
  24. D. McNulty, E. Carroll and C. O'Dwyer, Adv. Energy Mater., 7, 1602291 (2017).
  25. E. Armstrong and C. O'Dwyer, J. Mater. Chem. C, 3, 6109 (2015).
  26. E. Armstrong, D. McNulty, H. Geaney and C. O’Dwyer, ACS Appl. Mater. Interfaces, 7, 27006 (2015).
  27. A. Lonergan, B. Murphy and C. O'Dwyer, ECS J. Solid State Sci. Technol., 10, 085001 (2021).

Figure 1. Bright field TEM of a cross section of an InP electrode after a potential sweep from 0.0 to 0.44 V (SCE) in 5 mol dm-3 KOH at 2.5 mV s-1. The plane of the micrograph is (011).