Figure 1 shows the diagram of the deposition system including an additive injection pump, an electrochemistry workstation, an electrochemical cell fixed on a 3D moving stage, and an optical monitoring system. Figure 2 shows the optical images of the evolution of a copper pillar structure. In this particular case, the background electrolyte contains both polyethylene glycol as a suppressor and chloride ion as the suppression promoter, whilst the injected electrolyte does not have the suppression promoter. Therefore, the growth rate of copper in the injected electrolyte is faster than in the background electrolyte. On the other hand, the fast diffusion of chloride results in a confined region where the chloride is absent and therefore a confined growth region. Both experimental observations and numerical simulation results will be discussed in the talk.
REFERENCES
- J. Kelly and A. West, Journal of The Electrochemical Society, 145, 3472 (1998).
- J. Kelly and A. West, Journal of The Electrochemical Society, 145, 3477 (1998).
- T. P. Moffat, J. E. Bonevich, W. H. Huber, A. Stanishevsky, D. R. Kelly, G. R. Stafford and D. Josell, Journal of The Electrochemical Society, 147, 4524 (2000).
- R. Akolkar and U. Landau, Journal of The Electrochemical Society, 151, C702 (2004).
- J. D. Madden and I. W. Hunter, Journal of microelectromechanical systems, 5, 24-32 (1996).
- S. K. Seol, A. R. Pyun, Y. Hwu, G. Margaritondo and J. H. Je, Adv Funct Mater, 15, 934-937 (2005).
- J. Sun, D. Liu, F. Wang and T. Chen, Proceedings of Electronic Packaging Technology (ICEPT), 2016 17th International Conference on, pp. 322-326, 2016.
- J. Hu and M. F. Yu, Science, 329, 313-316 (2010).
- S. K. Seol, D. Kim, S. Lee, J. H. Kim, W. S. Chang and J. T. Kim, Small, 11, 3896-3902 (2015).
- L. Hirt, S. Ihle, Z. Pan, L. Dorwling-Carter, A. Reiser, J. M. Wheeler, R. Spolenak, J. Voros and T. Zambelli, Advanced Materials, 28, 2311-2315 (2016).