1018
(Invited) High-k Materials and Embedded Nanocrystals for Electronic and Photonic Applications

Wednesday, 1 June 2016: 15:40
Sapphire 410 A (Hilton San Diego Bayfront)
J. Heitmann (Institute of Applied Physics,TU Bergakademie Freiberg)
High-k materials play a major role in semiconductor research and development. Semiconductor industry made a step towards high-k dielectrics like Al2O3, HfO2 and ZrO2 for MIM capacitors in DRAM and rf applications [1], as well as for gate dielectrics for sub 45 nm devices or in high electron mobility transistor in GaN based hetero structures. Implementing high-K materials into the process flow of a GaN based high electron mobility transistor needs to adapt the whole process sequence, like thermal budget of electrode formation etc. [2]. Furthermore, in solar industry the high-k material Al2O3 is discussed to replace SiN passivation layer for the newest PERC concept [3,4].

Beyond the already established applications routes high-k materials show superior properties as matrix material for semiconductor quantum dots – rare earth element alloys to enhance their optical and electrical properties. Embedded group IV nanocrystals like Si and Ge show superior charge storage properties in high-K matrix materials deposited via rf-magnetron sputtering. Ge nanocrystals embedded in an amorphous TaZrOx matrix as blocking oxide implemented in a metal-insulator-semiconductor capacitor show a voltage hysteresis in a capacitance-voltage slope of 5 V and a programming voltage – hysteresis voltage slope of nearly 1 [5]. In case of embedded Au nanoparticles in sol gel deposited Er doped ZrO2 films a temperature stability of the Au nanoparticle related surface plasmon resonance up to 1000°C annealing temperature could be shown [6].

In this contribution we will review our efforts to realize optimized properties of the high-K materials for the needs of the different applications as matrix material for nanocrystalline semiconductors for optical and electrical applications and as passivation layer for Si photovoltaics or nitride electronics.

[1] J. Heitmann, A. Avellan, T. Boescke, E. Erben, B. Hintze, S. Jakschik, S. Kudelka, and U. Schroeder, HfAlO and HfSiO Based Dielectrics for Future DRAM Application, ECS. Trans. 2 (2006) 217.

[2] Schmid, A.; Schröter, Ch.; Otto, R.; Schuster, M.; Klemm, V.; Rafaja, D.; Heitmann, J., Appl. Phys. Lett. 106, 053509 (2015)

[3] Benick et al. Applied Physics Letters 2008; 92; 253504

[4] F. Kersten, A. Schmid, S. Bordihn, J. W. Müller, J. Heitmann, Energy Procedia, 38, p. 843, (2013)

[5] D. Lehninger, P. Seidel, M. Geyer, F. Schneider, V. Klemm, D. Rafaja, J. von Borany, J. Heitmann, Appl. Phys. Lett. 106, 023116 (2015)

[6] S. Seidel, A. Sabelfeld, R. Strohmeyer, G. Schreiber, V. Klemm, D. Rafaja, Y. Joseph, and J. Heitmann, J. of Appl. Phys., submitted for publication.