Numerous synthesis techniques have been employed to prepare NMC, including solid state reaction, co-precipitation, sol-gel and hydrothermal reaction [18-21]. However, several shortcomings are associated with these processes, such as structural inhomogeneity, irregular morphology, a series of time-consuming steps, and poor control of the particle size. Reactive spray deposition technology (RSDT), a single-step flame based deposition method, is capable of synthesizing and depositing NMC nanoparticles directly onto a stainless steel current collector to form a thin film electrode. The as-deposited electrode is ready for electrochemical testing in 2032 coin-type cell assembly without further processing. The particle size distribution and surface morphology of the deposited film can be well controlled through modifying the reactant concentration in the solvent, the feed rate of the precursor solution, and the flow rate of oxidant gases. The nanostructure of the LiNi1/3Mn1/3Co1/3O2 cathode fabricated by RSDT significantly shortens the diffusion length for the li-ions, offering potential to improve rate capability [22].
In this study, X-ray diffraction (XRD), scanning electron microscopy and transmission electron microscopy (TEM) are employed to investigate the crystal and surface structure of the NMC thin film electrode. Electrochemical properties of as-deposited electrode are evaluated with using lithium foil as the counter electrode.
References:
- M.S. Whittingham, Chem. Rev. 104 (2004) 4271-4302.
- M.R. Palacín, Soc. Rev. 38 (2009) 2565-2575.
- C. Liu, et al., Adv. Mater. 22 (2010) E28-E62.
- T. Ohzuku, J. Power Sources 174 (2007) 449.
- T. Nagaura, Prog. Batter. Battery Mater. 10 (1991) 18-26.
- G. Ceder, et al., Nature 392 (1998) 694.
- R. Thirunakaran, et al., Ionics 9 (2003) 388-394.
- P. Kalyani, N. Kalaiselvi, Sci. Technol. Adv. Mater. 6 (2005) 689–703.
- W. Li, et al., Solid State Ionics 67 (1993) 123.
- W.J. Zhou, et al., Electrochim. Acta 51 (2006) 4701.
- G.G. Amatucci, et al., J. Power Sources 69 (1997) 11-25.
- T. Ohzuku, Y. Makimura, Chem. Lett. 7 (2001) 642-643.
- T. Ohzuku, et al., Electrochim. Acta 38 (1993) 1159.
- X. Li, et al., Energy Environ. Sci. 7 (2014) 768-778.
- K.S. Lee, et al., J. Electrochem. Soc. 154 (2007) A971-A977.
- S.K. Kim, et al., Int. J. Electrochem. Sci. 3 (2008) 1504–1511.
- H.J. Noh, et al., J. Power Sources 233 (2013) 121–130.
- K.C. Mahesh, et al., J. Electrochem. Soc. 159 (2012) A1040-A1047.
- S.Y. Yang, et al., J. Solid State Electrochem. 16 (2012) 481-490.
- W. Zhang, et al., Rare Met. 27 (2008) 158–164.
- J.L. Xie, et al., Ceram. Int. 36 (2010) 2485-2487.
- F. Wang, et al., Chem. Commun. 49 (2013) 9209-9211.