Tuesday, 30 May 2017: 11:40
Churchill C2 (Hilton New Orleans Riverside)
Photoelectrochemical splitting of water to produce hydrogen is a viable approach to transform sunlight into chemical energy, which has triggered a quest for suitable photocatalysts. Among different semiconductor metal oxides, hematite (α-Fe2O3) has emerged as a promising photo-anode material for water oxidation since it is cheap, abundant, non-toxic and stable under photoelectrochemical conditions. Although it promises high theoretical photocurrent densities (11–14 mA/cm2), corresponding to a solar-to-hydrogen (STH) efficiency of 14-17 %, these values can hardly be attained since hematite suffers from high resistivity,] short lifetime of the photoexcited charge carriers, and short hole diffusion length (2-4 nm). Few of these limitations can be overcome by optimizing the nanostructure and electronic properties, as recently shown in a number of studies.In this study, we have focused on Interfacial modification of α-metal oxide multilayer photoanodes deposited by plasma enhanced chemical vapor deposition (PE-CVD). Different mechanisms such as heterostructuring (Fe2O3//TiO2), nano-structuring, patterning of multilayering with different structure (bar structure or line structure) or graphene supporting were examined in this study. The bilayer electrode exhibited enhanced PEC responses in terms of a lower onset potential and a higher photocurrent density when compared to the single layer α-Fe2O3 electrode. This enhancement was observed to be due to synergistic light absorption with the bilayer electrode, although charge carrier recombination occurred faster due to interfacial defect states. The incorporation of a graphene layer between the α-Fe2O3/TiO2 double layer and the FTO substrate resulted in a doubling of the photocurrent, but lead to a loss of the synergistic effect between the two active metal oxide layers. However, depositing the graphene between the two metal oxide layers resulted in an even higher photocurrent, while retaining the enhanced onset potential of the double layer electrode. This enhancement was observed to be due to either the passivation of the oxide defect states or enhancement of the charge transfer between the two oxide layers.