Herein, we present for the first time a tri-metallic PdAuCu nanobranched heterostructure as self-repair catalyst for ORR. In this heterostructured PdAuCu, the AuCu alloy serves as a stable support for Cu oxide/Pd heterogeneous interface (AuCu@CuxO/Pd). By tuning the oxidation state of Cu via high potential treatment (HPT), Cu (Ⅱ) was in-situ formed, which is responsible for repairing the catalyst. As the high potential is inevitably experienced at cathode during start-up and shut-down operations of a fuel cell, we proposed this catalyst as a “self-repair” catalyst in a broad sense. This work provides a novel strategy for fabricating efficient ORR catalysts by smartly utilizing the high potential during start-up and shut-down operations.
The ORR activity and durability of PdAuCu after high potential heat-treatment (PdAuCu-HPT) are shown in Figure 1.
Figure 1. (A) Mass activities of Pt/C, Pd/C, PdAuCu and PdAuCu-HPT at different cycles. ORR polarization curves of (B) initial Pt/C, initial Pd/C, PdAuCu-2000th-HPT and (C) initial Pd/C and Pd/C-2000th-HPT in O2-saturated 0.1 M KOH solution at room temperature, with a rotation rate of 1600 rpm and a potential sweep rate of 10 mV s-1.
Acknowledgements
This work is supported by National Natural Science Foundation of China (Nos. 51272167 and 21206101 ).
References
[1] M. Winter, R.J. Brodd, Chem. Rev., 104 (2004) 4245-4269.
[2] I. Katsounaros, S. Cherevko, A.R. Zeradjanin, K.J.J. Mayrhofer, Angew. Chem. Int. Ed., 53 (2014) 102–121.
[3] X. Ge, A. Sumboja, D. Wuu, T. An, B. Li, F.W.T. Goh, T.S.A. Hor, Y. Zong, Z. Liu, ACS Catal., 5 (2015) 4643-4667.
[4] P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C. Yu, Z. Liu, S. Kaya, D. Nordlund, H. Ogasawara, Nat. Chem., 2 (2010) 454-460.
[5] V.D.V. Df, C. Wang, D. Tripkovic, D. Strmcnik, X.F. Zhang, M.K. Debe, R.T. Atanasoski, N.M. Markovic, V.R. Stamenkovic, Nat. Mater., 11 (2012) 1051-1058.
[6] R. Cao, J.S. Lee, M. Liu, J. Cho, Adv. Energy Mater., 2 (2012) 816–829.
[7] L.M. Roen, C.H. Paik, T.D. Jarvi, Electrochem. Solid-State Lett., 7 (2004) A19-A22.
[8] Y. Shao, G. Yin, Y. Gao, J. Power Sources, 171 (2007) 558-566.
[9] A. Young, V. Colbow, D. Harvey, E. Rogers, S. Wessel, J. Electrochem. Soc., 160 (2013) F381-F388.
[10] C.A. Reiser, L. Bregoli, T.W. Patterson, J.S. Yi, J.D. Yang, M.L. Perry, T.D. Jarvi, C.A. Reiser, L. Bregoli, T.W. Patterson, Electrochem. Solid-State Lett., 8 (2005).
[11] Y. Yu, H. Li, H. Wang, X.Z. Yuan, G. Wang, M. Pan, J. Power Sources, 205 (2012) 10-23.
[12] E. Brightman, G. Hinds, J. Power Sources, 267 (2014) 160-170.
[13] K. Yoshii, K. Yamaji, T. Tsuda, H. Matsumoto, T. Sato, R. Izumi, T. Torimoto, S. Kuwabata, J. Mater. Chem. A (2016).
[14] J.C.C. Hemminger, G.W. Crabtree, M. Kastner, New Science for a Secure and Sustainable Energy Future, (2008).
[15] J. Hemminger, G. Fleming, M. Ratner, Directing Matter and Energy: Five Challenges for Science and the Imagination, Matter, (2007).
[16] M.W. Kanan, D.G. Nocera, Science, 39 (2008) 1072-1075.
[17] D.A. Lutterman, Y. Surendranath, D.G. Nocera, J. Am. Chem. Soc., 131 (2009) 3838-3839.