According to the analogous method of the water splitting system, we have successfully constructed the artificial-photosynthesis system that produces the ammonia by a photofixation of a nitrogen molecule based on visible light irradiation [9]. Unlike the water splitting system, ruthenium was used as a co-catalyst instead of a platinum for the ammonia synthesis, and not a solution system but a gas system was used to reduce nitrogen gas. The action spectrum of the apparent quantum efficiency of ammonia evolution showed good agreement with the plasmon resonance spectrum. In addition, we revealed that ammonia could be obtained with ~100% selectivity by using zirconium/zirconium oxide cocatalyst [10]. These findings blaze new methods for energy-efficient photocatalytic production of ammonia using solar light, water, and nitrogen gas, which are entirely different from conventional methods of ammonia synthesis.
References
- Nishijima, Y., Ueno, K., Yokota, Y., Murakoshi, K., Misawa, H. J. Phys. Chem. Lett. 2010, 1, 2031−2036.
- Gao, S., Ueno, K. Misawa, H. Accounts. Chem. Res., 2011, 44, 251−260.
- Shi, X., Ueno, K., Oshikiri, T., Misawa, H. J. Phys. Chem. C, 2013, 117, 24733−24739.
- Nishijima, Y., Ueno, K., Kotake, Y., Murakoshi, K., Inoue, H., Misawa, H. J. Phys. Chem. Lett., 2012, 3, 1248−1252.
- Shi, X., Ueno, K., Takabayashi, N., Misawa, H. J. Phys. Chem. C, 2013, 117, 2494−2499.
- Ueno, K., Misawa, H. NPG Asia Mater., 2013, 5, e61.
- Zhong, Y., Ueno, K., Mori, Y., Shi, X., Oshikiri, T., Murakoshi, K., Inoue, H., Misawa, H. Angew. Chem. Int. Ed., 2014, 53, 10350−10354.
- Zhong, Y., Ueno, K., Mori, Y., Oshikiri, T., Misawa, H. J. Phys. Chem. C, 2015, 119, 8889−8897.
- Oshikiri, T., Ueno, K., Misawa, H., Angew. Chem. Int. Ed., 2014, 53, 9802−9805.
- Oshikiri, T., Ueno, K., Misawa, H., Angew. Chem. Int. Ed., 2016, 55, 3942−3946.