1301
(Invited) Enhanced Self-Assembly of Crystalline, Large-Area and Periodicity-Tunable TiO2 Nanotube Arrays on Various Substrates for Technological Applications

Wednesday, 4 October 2017: 10:20
Chesapeake E (Gaylord National Resort and Convention Center)
J. C. Ho (Dept of Materials Science & Engr., City Univ. of Hong Kong)
Due to their superior physical properties, titanium dioxide (TiO2) nanotube arrays are one of the most investigated nanostructure systems in materials science until now. However, it is still a great challenge to achieve damage-free techniques to realize controllable, cost-effective and high-performance TiO2 nanotube arrays on both rigid and flexible substrates for different technological applications. In this work, we demonstrate a unique strategy to achieve self-assemble crystalline, large-area and regular TiO2 nanotube arrays on various substrates via hybrid combination of conventional semiconductor processes. Besides the usual applications of TiO2 as carrier transport layers in thin film electronic devices, we demonstrate that the periodic TiO2 nanotube arrays can show the effect of optical grating with large-area uniformity. Specifically, the fabricated nanotube geometries, such as the tube height, pitch, diameter and wall thickness, as well as the crystallinity can be reliably controlled by varying the processing conditions. More importantly, utilizing these nanotube arrays in perovskite solar cells can further enhance the optical absorption leading to the improved power conversion efficiency. In contrast to other typical template-assisted fabrication approaches, we employ the soft template here, which would enable the construction of nanotube arrays without any significant damage associated with the template removal. Furthermore, without the thermal restriction of underlying substrates, these crystalline nanotube arrays can be transferred to mechanically flexible substrates by using the simple one-step method, which can expedite these nanotubes for potential utilizations in other application domains.