Cathode Reactions in the Rechargeable Aprotic Li-O2 Battery

Wednesday, 4 October 2017: 09:20
Maryland A (Gaylord National Resort and Convention Center)
C. Holc (University of Oxford, Department of Materials) and P. G. Bruce (Department of Materials, University of Oxford)
Rechargeable battery technologies such as Li-ion have revolutionised personal electronics over the last 25 years. However, Beyond Li-ion technologies are becoming increasingly important towards meeting society’s future energy storage needs. We must explore these alternatives, such as the Li-air (O2) battery, which can offer higher practical specific energy densities than Li-ion batteries; however there remain many challenges to be overcome before Li-O2 batteries are commercialised.1-5 One spin-off from the recent interest in rechargeable Li-O2 batteries, based on aprotic electrolytes, is the significant advances made in understanding the fundamental processes occurring on O2 reduction (discharge) at the cathode.6-12

Based on these studies, it is generally accepted that a solution growth mechanism will be required to achieve high rates and capacities. One way to achieve discharge in solution is use of high donor or acceptor number (DN/AN) electrolytes,13,14 but these are typically less stable towards LiO2 and Li2O2 than their low DN/AN counterparts.15 To solve this dilemma, additives, such as redox mediators, have been introduced into low DN/AN electrolytes to encourage the discharge in solution.13,16-18 Here, we discuss our recent studies into the electrochemistry at the cathode, in the presence of additives and utilise a range of electrochemical and spectroscopic techniques to determine the precise nature in which additives influence O2 reduction.

(1) Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J.-M. Nat. Mater. 2012, 11, 19.

(2) Lu, Y. C.; Gallant, B. M.; Kwabi, D. G.; Harding, J. R.; Mitchell, R. R.; Whittingham, M. S.; Shao-Horn, Y. Energy Environ. Sci. 2013, 6, 750.

(3) Black, R.; Adams, B.; Nazar, L. F. Adv. Energy Mater. 2012, 2, 801.

(4) Girishkumar, G.; McCloskey, B.; Luntz, A. C.; Swanson, S.; Wilcke, W. J. Phys. Chem. Lett. 2010, 1, 2193.

(5) Li, F.; Zhang, T.; Zhou, H. Energy Environ. Sci. 2013, 6, 1125.

(6) Horstmann, B.; Gallant, B.; Mitchell, R.; Bessler, W. G.; Shao-Horn, Y.; Bazant, M. Z. J. Phys. Chem. Lett. 2013, 4, 4217.

(7) Hummelshoj, J. S.; Luntz, A. C.; Norskov, J. K. J Chem Phys 2013, 138, 034703.

(8) McCloskey, B. D.; Scheffler, R.; Speidel, A.; Girishkumar, G.; Luntz, A. C. J. Phys. Chem. C 2012, 116, 23897.

(9) Trahan, M. J.; Mukerjee, S.; Plichta, E. J.; Hendrickson, M. A.; Abraham, K. M. J. Electrochem. Soc. 2013, 160, A259.

(10) Sharon, D.; Etacheri, V.; Garsuch, A.; Afri, M.; Frimer, A. A.; Aurbach, D. J. Phys. Chem. Lett. 2012, 4, 127.

(11) Jung, H. G.; Kim, H. S.; Park, J. B.; Oh, I. H.; Hassoun, J.; Yoon, C. S.; Scrosati, B.; Sun, Y. K. Nano Letters 2012, 12, 4333.

(12) Zhai, D.; Wang, H. H.; Yang, J.; Lau, K. C.; Li, K.; Amine, K.; Curtiss, L. A. J. Am. Chem. Soc. 2013, 135, 15364.

(13) Gao, X.; Chen, Y.; Johnson, L.; Bruce, P. G. Nat. Mater. 2016, 15, 882.

(14) Burke, C. M.; Pande, V.; Khetan, A.; Viswanathan, V.; McCloskey, B. D. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 9293.

(15) Khetan, A.; Luntz, A.; Viswanathan, V. J. Phys. Chem. Lett. 2015, 6, 1254.

(16) Lacey, M. J.; Frith, J. T.; Owen, J. R. Electrochem. Commun. 2013, 26, 74.

(17) Sun, D.; Shen, Y.; Zhang, W.; Yu, L.; Yi, Z.; Yin, W.; Wang, D.; Huang, Y.; Wang, J.; Wang, D.; Goodenough, J. B. J. Am. Chem. Soc. 2014, 136, 8941.

(18) Matsuda, S.; Hashimoto, K.; Nakanishi, S. J. Phys. Chem. C 2014, 118, 18397.