This study removes this complexity by investigating well-defined Pt thin film electrodes that are encapsulated with silicon oxide (SiOx) nanomembranes. By systematically changing the SiOx thickness and evaluating hydrogen evolution reaction (HER) performance, we seek to gain deeper understanding of the structure-property relationships that affect the transport properties through SiOx nanomembranes. This membrane coated electrocatalyst (MCEC) architecture provides a promising approach to enhance electrocatalyst stability, improve poison resistance, and/or tune reaction selectivity. We use a room-temperature UV ozone synthesis process to systematically control the thickness of SiOx overlayers with nanoscale precision and evaluate the effects on the ECSA and HER performance of the underlying Pt thin films. Through detailed characterization of the SiOx overlayers this study shows that proton and H2 transport occur primarily through the SiOx coating. Notably, the SiOx nano-membranes exhibit high selectivity for proton and H2 transport compared to a HER poison species such as copper ions. These results demonstrate that MCECs are capable of multifunctional catalysis with poisoning resistance, still a more complete understanding of the structure-property-performance relationships will enable design improvements to further minimize efficiency losses due to mass-transport overpotential losses.
References:
[1] Shao-Horn, Y.; Sheng, W. C.; Chen, S.; Ferreira, P. J.; Holby, E. F.; Morgan, D. Top. Catal. 2007, 46(3–4), 285.
[2] Wang, Y.; Chen, K. S.; Mishler, J.; Cho, S. C.; Adroher, X. C. Appl. Energy 2011, 88(4), 981.
[3] Paidar, M.; Fateev, V.; Bouzek, K. Electrochimica Acta. 2016, pp 737–756.
[4] Debe, M. K. Nature 2012, 486(7401), 43.
[5] Pinaud, B. A.; Benck, J. D.; Seitz, L. C.; Forman, A. J.; Chen, Z.; Deutsch, T. G.; James, B. D.; Baum, K. N.; Baum, G. N.; Ardo, S.; Wang, H.; Miller, E.; Jaramillo, T. F. Energy Environ. Sci. 2013, 6(7), 1983.
[6] Ferreira, P. J.; la O’, G. J.; Shao-Horn, Y.; Morgan, D.; Makharia, R.; Kocha, S.; Gasteiger, H. A. J. Electrochem. Soc. 2005, 152(11), A2256.
[7] Pavlišič, A.; Jovanovič, P.; Šelih, V. S.; Šala, M.; Hodnik, N.; Hočevar, S.; Gaberšček, M. Chem. Commun. (Camb). 2014, 50(28), 3732.
[8] Takenaka, S.; Miyamoto, H.; Utsunomiya, Y.; Matsune, H.; Kishida, M. J. Phys. Chem. 2014, 118(2), 774.
[9] Labrador, N. Y.; Li, X.; Liu, Y.; Tan, H.; Wang, R.; Koberstein, J. T.; Moffat, T. P.; Esposito, D. V. Nano Lett. 2016, 16 (10), 6452.