In the present work, a promising anode material for Li-ion batteries consisting of active material deposited on carbon nanotubes (CNT) has been synthesized as a viable electrode generated by a commerically viable facile electrodeposition (ED) process. At first, a thin layer of catalyst M on Cu substrate (denoted as M-Cu) has been developed using a high throughput solution based coating technique. The SEM image and EDAX mapping (Fig 1a) of M-Cu confirms that a distinct layer (<1µ) of catalyst M is coated on the Cu foil. Subsequently, a forest of carbon nanotubes (CNTs)is grown on the M-Cu substrate by CVD technique using a mixture of cost effective carbon precursors and argon at varying temperatures and times. The SEM image of the CNT/M-Cu (Fig 1b) shows the formation of CNTs well adhered to the M/Cu substrate. The thickness of the CNT layer varies from ~30µ to ~200µ depending on the deposition time. Amorphous Si is deposited on the CNT/M-Cu by a commerically viable electrodeposition process using a non aqueous ionic electrolyte consisiting of silicon containing precursors. The SEM analysis of the Si deposited CNT/M-Cu (Fig 1c and Fig 1d) shows a uniform film of Si deposited on the CNTs with the size of the silicon particles being < 100nm. Furthermore, the CNT/Cu substrate was used to develop S/CNT nanostructured composite on Cu substrate as the cathode. The electrodes of these nanocomposites (Si/CNT and S/CNT) were initially tested in a half cell configuration within the voltage range of 0.01V – 1V vs. Li/Li+in their respective electrolyte system without addition of any binder.
The electrodeposited Si on CNT/M-Cu (denoted as ED-Si/CNT) was tested as an anode in Li/Li+ electrochemical cell without any further addition of additives. The ED-Si/CNT electrodes show a first cycle discharge and charge capacity of ~ 3435 mAh/g and ~2050 mAh/g, respectively, with a first cycle irreversible (FIR) loss of ~35-45% (Fig 1e) at a charge/discharge current rate of ~300mA/g. The ED-Si/CNT also shows an excellent capacity retention with a stable capacity of ~1870 mAh/g up to 70 cyles (Fig. 1e).
The electrochemical performance of S/CNT binderless electrode shall be reported and discussed along with complete characterization of the electrodes using Raman Spectroscopy, X-ray Diffraction, TEM and XPS to understand the behavior of these respective electrode system with respect to Li/Li+system.
Acknowledgement:
The authors gratefully acknowledge financial support of the DOE-BATT (DE-AC02-05CHl1231), DOE-PNNL and NSF (CBET-1511390) programs. The authors also acknowledge the Edward R. Weidlein Chair Professorship funds and the Center for Complex Engineered Multifunctional Materials (CCEMM) for support of this research.
References:
[1] I. Kim, P.N. Kumta, G.E. Blomgren, Electrochemical and Solid State Letters 3 (2000) 493-496.
[2] X.H. Liu, L. Zhong, S. Huang, S.X. Mao, T. Zhu, J.Y. Huang, ACS Nano 6 (2012) 1522-1531.
[3] M.K. Datta, J. Maranchi, S.J. Chung, R. Epur, K. Kadakia, P. Jampani, P.N. Kumta, Electrochimica Acta 56 (2011) 4717-4723.
[4] W. Wang, R. Epur, P.N. Kumta, Electrochemistry Communications 13 (2011) 429-432.
[5] W. Wang, P.N. Kumta, ACS Nano 4 (2010) 2233-2241.
[6] R. Epur, M.K. Datta, P.N. Kumta, Electrochimica Acta 85 (2012) 680-684.
[7] J. R. Akridge, Y. V. Mikhaylik and N. White, Solid State Ionics, 2004, 175, 243-245.
[8] X. Ji and L. F. Nazar, Journal of Materials Chemistry, 2010, 20, 9821-9826.
[9] G. C. Li, J. J. Hu, G. R. Li, S. H. Ye and X. P. Gao, Journal of Power Sources, 2013, 240, 598-605.
[10] C.-N. Lin, W.-C. Chen, Y.-F. Song, C.-C. Wang, L.-D. Tsai and N.-L. Wu, Journal of Power Sources, 2014, 263, 98-103.