Implementation of Tin Dioxide/Graphene/Graphene Oxide for High Capacity and Long Cycle Life Supercapacitors and As Anode Material for Lithium Ion Batteries

Wednesday, 4 October 2017
Prince George's Exhibit Hall D/E (Gaylord National Resort and Convention Center)


Energy storage and conversion mechanism are different for on lithium ion batteries (LIB) and supercapacitors (Electrical Double Layer Capacitors- EDLCs), materials that can be used for both could lead in the future the energy storage and conversion technologies. We explored a non-conventional process to synthesize SnO2/G/GO composite powder which is conformal structure was characterized under different techniques. Comprehensive analysis of the structural and chemical properties reveals that the material consists of highly dispersed SnO2 nanoparticles in G/GO matrix.

The dispersed SnO2/G/GO suspension was coated an aluminum foil for the supercapacitors electrodes. We examine the electrical conductivity of the electrodes by atomic force microscope (AFM), scanning electron microscope (SEM) and transmission electron microscope (TEM). We assembled the Al coated SnO2/G/GO composite as a supercapacitor inserting one solid-state electrolyte between two electrodes, assembled into a sandwich structure. The specific capacitance and cycle-life stability of the supercapacitor was investigated by cyclic voltammetry analysis. For LIB applications, the SnO2-G/GO composite exhibited high capacity and excellent electrochemical performance as anode material. For both applications, the quantitative/qualitative results show that G/GO is providing contact areas which results in more energy density at the interface electrode/electrolyte and that the SnO2 provides additional ions to the EDL and the electrochemical process. The Overscreening phenomena observed, which is a function of ionic size, surface charge density of the electrodes, can also be a function of concentration of the electrolyte, porosity of the electrodes (G/GO) and the ions provided to the electrode/electrolyte interface by the electrode.